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1 Introduction

The goals of this research is to overcome the difficulties created by mesh shearing
in the simulation of aircraft with large control surface deflection. The origin of
the difficulties for the correct modeling of large control surface deflection is
that they introduce shearing in the mesh at the place where the control surface
rieets the fixed paxt of the wing (see Fig. 1). Such a geometrical shearing is very
difficult to handle, in particular in Finite Volume or Finite Element, approaches.
One option to tackle this problem is the use of Chimera grids.However Chimera
grid approaches are relatively expensive in geometric computation and introduce
an interpolation error due to the overlap of the grids. We have proposed to
explore two alternate methods to tackle this issue:

1. Meshfree Methods.

2. Level-Set Methods.

During the first year of this research, we developed the Meshfree method for
aeroelastic problems and created a new approach to dealing with Neumann
Boundary Conditions. We then proceeded to implement this approach in two
dimensions and showed initial aeroelastic results for an airfoil moving in a forced
pitching motion. The experiments showed that the method worked, though the
cost of the method tended to indicate that its use should be limited to areas
where other methods would not be appropriate.

In the second year, we then tackled the problem of Control Surface Deploy-
ment. This effort resulted in some partial success. However, new problems
surfaced with conditioning of the resulting system and we started the level-set
type approach to avoid the ill-conditioning problem. This approach has shown
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~Shearing Zones

Figure 1: Mesh Shearing Regions due to Control Surface Deflections

good results for any geometry and at the end of the project, work was continu-
ing in implementing the full time dependent solution of problems with moving
control surfaces.

2 The Meshless Approach to Aeroelasticity

2.1 The reasons for a Meshless Approach to Aeroelasticity
We have chosen to approach the problem of simulating aircraft with large con-
trol surface deflection with a Meshless Approach. Meshless inethods have bet
applied to problems from Crack propagation to Astrophysics and Fluid prob-
lenis. In general, such methods are particularly adapted where the boundary of
the computational domain greatly evolves during the time of the simulation.

Meshless Methods are particularly adapted to problems where the boundary
significantly evolves in time, because they never require to form or maintain a
mesh topology. Unlike Finite Element or Finite Volume methods, where the
motion of nodes is constrained by the necessity to preserve positivity of the
volumes of the discretization elements, the Meshless Methods can accept almost
arbitrary relative motions of all the nodes.

The only constrain imposed on the relative motion of the nodes is that a
sufficient number of nodes are close to any point in the domains, so that the
interpolation functions are well defined for every point in the domain. The exact
number of nodes and the definition of close depends on the particular variant
of Meshless Methods being used. In general, such constraints are rather weak
and can easily be enforced with no significant difficulty.

These facts are major advantages for the Meshless Approaches when applied
to Aeroelasticity problems. This is true, not only when large control surface
deflections are present, but also when large relative motions of objects have
to be simulated. Examples of such problems are Missile Separation problems,
Ejection Seat simulations and Formation Flying of several aircraft.
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2.2 Advantages of Meshless Approaches to Aeroelasticity

" Ease of handling arbitrary relative motion of boundaries. Because mesh-
less methods do not require to maintain a topological coherence to the
mesh, nodes can be moved almost arbitrarily relative to one another.

" Ease of refining the solution by inserting new nodes. New nodes can
easily inserted to refine the solution where high gradients are observed.
The insertion does not require, as in FE or FV methods to construct a
new mesh topology.

2.3 Disadvantages of Meshless Approaches to Aeroelastic-
ity

The major disadvantages of Meshless Approaches when applied to Aeroelastic
problems are:

" Cost: The computation of the shape functions with some methods (for ex-
ample RKPM) is much more expensive than a Finite Element equivalent.

" Essential Boundary Conditions: Imposing Essential Boundary Conditions
in Meshless Methods is not a trivial matter. This is shared with all Mesh-
less methods and is due to the fact that the value of the solution at a
computational node is not equal to the value of the node. Or phrased
mathematically, the Meshless shape functions do not exhibit a Kronecker
delta property.

" Complexity of integration, choosing Gauss Points and finding nodes with
influence over the Gauss Points.

3 Results on Meshless Methods

A graduate student, Vivek Kaila, was recruited to work on this project and
began working March 1st 2004. Our approach is based on the use of the Repro-
ducing Kernel Particle Method combined with the Streamline Upwind Petrov-
Galerkin (SUPG) method.

3.1 RKPM Approach

Of the various methods that exist in the literature on Meshless Methods, we
chose to concentrate on the Reproducing Kernel Particle Method (RKPM), due
its use by other researchers in CFD problems. The research did not seek to be
on the chosen Meshless Method, but on the adaptation of Meshless Methods to
Aeroelastic problems. The developments made in this research are, and should
remain, applicable to any Meshless Method.
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Common to all Meshless Methods, the solution is constructed from some
nodal values' U1 and shape functions 411(x) are constructed for each node. The
solution is then given by: u(X) 4111JI(1

I

The difference between the different existing methods is in the construction
and resulting properties of the shape function. We note that the difficulty
in the imposition of essential boundary conditions is a result of the fact that

I*(xJ) : Aj where xj is the location of node J.

3.2 Imposing Boundary Conditions
As was mentioned before, the main difficulty with Meshless Methods is to impose
Essential Boundary Conditions. Several existing approaches were considered but
were deemed unsatisfactory:

* Lagrange Multiplier Methods: Such methods impose the essential bound-
ary conditions in a weak manner. Either by collocation - in which case
the boundary conditions are satisfied only at a discrete set of points - or
in an average form. The resulting solution is equivalent to having solved
the problem around a slightly different structure than the intended one.

" Blending of Meshless and Finite Element methods: Such methods which
transition the Meshless solution to a Finite Element (FE) solution on
the boundary do not suffer of the aforementioned problem. However, if
refinement of the solution is needed, they require a re-meshing of the
FE mesh near the boundary to capture the same fine solution as in the
Meshless Domain. Such re-meshing is much more expensive to perform
than the insertion of nodes in the Meshless approach and requires an
added interpolation of the solution between meshes, if this operation is
performed during a time dependent simulation.

We decided to design a new method for the imposition of the Essential
Boundary Conditions, with the following features:

" The method should preserve the spatial resolution of the Meshless solution
without severe difficulties.

" It must impose the boundary condition strongly on the entire boundary.

" It must be easy to adapt for boundary surfaces undergoing arbitrary and
potentially large relative motions.

Our efforts have resulted in the design of a Projection Based Boundary
Condition treatment which we will now describe below:

IThese values are associated with the node but are not the value of the solution at the
node.
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Though we have started with the inviscid flow condition, and will only
present this case in what follows, the method extends fairly easily to viscous
flows.

In inviscid flows, the common type of boundary condition is the slip con-
dition, where the flow must be tangent to the airfoil or wing surface. Such a
condition, in the presence of a structural velocity at the interface 9, stipulates
that the flow velocity Yf must be such that:

uff . ii =--- usii on FFIS (2)

Let us remind the reader that the solution quantities are given by the conser-
vative variable vector which in two dimensions is given by:

U= u (3)

where u v are the components of the velocity vector and E is the total energy
density.

We then notice that given a solution UM that would be obtained by the
Meshless Approach, we can build a solution U that satisfies the Boundary Con-
dition by the use of a project:

U = PUM + QUs (4)

where

p ( 0 1 - n n ,, - n n ,-n,xny 1 - nyy 0

0 0 1
ando

Q = nyny

0
It is therefore possible to construct a continuous solution by gradually blending
the modified solution given by equation 4 and the meshless solution UM.

In the presence of a single surface, we define a ramping function r(x) which
is such that r(x) = I on I'F /S and becomes 0 away from the surface. Then the
solution is given by:

U = ((1 - r(x))I + r(x)P)UM + r(x)us (5)
The ramping function must transition between 0 and 1 around the interface in
a distance compatible with the expected resolution of the Meshless Method.

The method can then be extended to multiple surfaces by creating one ramp-
ing function that satisfy that the ramping function r,(x) for surface i is 0 away
from that surface and also on any other boundary surface, while it is I on its
respective surface.
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Figure 2: Pressure contours at M=0.6 on a 2000 node Mesh

4 Difficulties with the Meshless Method

Though, overall, the Meshless Method seems to perform reasonably well. How-
ever, when control surfaces are deployed, as the nodes attached to the various
components follow them in their motion, nodes attached to one component can
get extremely close to nodes associated with another component. As a result,
two problems became evident as more simulations were performed and time
dependent with control surface deployment problems were explored:

* on coarse mesh, the solution exhibits unacceptable oscillations.

" as the flap angle changes, node getting close create a very ill-conditioned
system.

The second problem is a major one and can easily be understood because the
equation for the shape functions starts exhibiting extremely strong local gradi-
ents when nodes get too close to one another. The first problem is linked to
the second and is exhibited in figure I Consequently, it was realized that some
method would have to be developed so that. solution from different meshes are
not active in the same area to avoid this problem. It seemed that a level-set type
method used to blend the solution from two meshes would provide a reasonably
inexpensive solution to this problem.

5 Levelset Method

The levelset method is used to blend the solution of two meshes as shown in
figure 5 For each mesh. we created two levelset methods, 4i and ij:

* 4) is akin to the Distance from the airfoil

* 4), = 0 on F,; 4, = I on far-field i

* qj is akin to the Distance from Non-Physical Mesh boundary

6



0.8 I

0.6-

0.4-

0.2

-0.2-

-0.4-

-0.6-

-0.8 I

0 0.2 0.4 0.6 0.8
x

Figure 3: C, contour on an airfoil with a deflected control surface
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Figure 4: The airfoil and flap meshes
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Figure 5: Level set functions

Both functions are created by solving a simple Laplace problem. Figure fig:phipsi
shows the contours of such functions. The level-set functions are then used to
blend the solutions U1 and U2 from both meshes: Let:

02 1 -P 2 - d 1
D = - + 1 (6)c 2

and
D2  I - D1  (7)

In these equations, d is a function of the angular deflection of the flap and
measures the difference TI1 - T12 at the intersection points of the meshes. c
is a parameter to adjust the width of the transition and the function D1 and
consequently D 2 are then clamped between 0 and 1/

We then define thee influence coefficients for each mesh, si and s2:

S,=40 - 41)/D2 _; S2 =1-SI
)= 2 (1 - (Dl)/D 2 + 4(1 - 42)/Di

Finally, we use these functions to blend the the two mesh solutions:

U = S1 U1 + S2U2

Figure 5 and 5 shows the contours of S1 = 0.9, S 1 = 0.5 and S = 0.1 from left
to right.

5.1 Node activation and de-activation

One notes that for some nodes, the Si function associated with their mesh, will
be identically zero over the whole domain of influence of the node. Such nodes
will thus have no contribution to the solution and are to be de-activated from
the solution process.
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Figure 6: Contours of the S, function
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Figure 7: Close-up of the contours of the S1 function
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Active zone

Inactive zone Space-Time slab

Figure 8: One dimensional Space-Time slabs associated with a single mesh

We also note that, as the angle of deflection of the control surface varies in
time, nodes can become inactive or active over time. It is therefore necessary
to devise a procedure to deal with this issue. The approach we devised to treat
the node activation and de-activation is based on the notion of space-time slabs.
One first notes that the time integration can generally be written in the form
of a time integral that combines with the space integration. For node I, we will
have an integral of the form:

+f)dd (8)

And <1D(x,t) is a test function associated with node I. In general, this test
function will be zero where node I has no influence in space time. Figure 5.1
shows for a one dimensional problem the active part of the space-time slab for
an element. This figure also illustrates the fact that, a node may be inactive at
time-step n while it becomes active at time-step n-+ 1. In such a case, before we
proceed with the integration from tn to t'+ 1

, the variables associated with an
inactive node have no value. Consequently, in the time integration between time
t' and tn+l, for a previously inactive node, both U' and U" + ' are unknown.
For such nodes, we have to write two versions of equation 8 with the shape
functions 4,n and )'F+'.

The additional equations, associated with the test function 4F7 provide the
required number of equation to completely solve the problem.
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6 Status

At the end of the project, we had demonstrated that the node activation/de-
activation method worked on a sample one dimensional problem and the imple-
mentation in two dimensions is still in progress.
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